A STUDY of FRACTIONAL HERMITE-HADAMARD-MERCER INEQUALITIES for DIFFERENTIABLE FUNCTIONS

Thanin Sitthiwirattham, Miguel Vivas-Cortez, Muhammad Aamir Ali, Hüseyin Budak, Ibrahim Avci

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this work, we prove a parameterized fractional integral identity involving differentiable functions. Then, we use the newly established identity to establish some new parameterized fractional Hermite-Hadamard-Mercer-type inequalities for differentiable function. The main benefit of the newly established inequalities is that these inequalities can be converted into some new Mercer inequalities of midpoint type, trapezoidal type, and Simpson's type for differentiable functions. Finally, we show the validation of the results with the help of some mathematical examples and their graphs.

Idioma originalInglés
Número de artículo2440016
PublicaciónFractals
Volumen32
N.º2
DOI
EstadoPublicada - 18 ene. 2024

Nota bibliográfica

Publisher Copyright:
© The Author(s)

Huella

Profundice en los temas de investigación de 'A STUDY of FRACTIONAL HERMITE-HADAMARD-MERCER INEQUALITIES for DIFFERENTIABLE FUNCTIONS'. En conjunto forman una huella única.

Citar esto