Weighted midpoint hermite-hadamard-fejér type inequalities in fractional calculus for harmonically convex functions

Humaira Kalsoom, Miguel Vivas-Cortez, Muhammad Amer Latif, Hijaz Ahmad

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

16 Citas (Scopus)

Resumen

In this paper, we establish a new version of Hermite-Hadamard-Fejér type inequality for harmonically convex functions in the form of weighted fractional integral. Secondly, an integral identity and some weighted midpoint fractional Hermite-Hadamard-Fejér type integral inequalities for harmonically convex functions by involving a positive weighted symmetric functions have been obtained. As shown, all of the resulting inequalities generalize several well-known inequalities, including classical and Riemann–Liouville fractional integral inequalities.

Idioma originalInglés
Número de artículo252
PublicaciónFractal and Fractional
Volumen5
N.º4
DOI
EstadoPublicada - 2 dic. 2021
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Huella

Profundice en los temas de investigación de 'Weighted midpoint hermite-hadamard-fejér type inequalities in fractional calculus for harmonically convex functions'. En conjunto forman una huella única.

Citar esto