Resumen
The purpose of this paper is to introduce Variable Structure-based-on-line learning algorithms for continuous time two layer and three layer perceptron networks with non-linear and linear activation functions. The computer implementation of the proposed algorithms result in a temporal learning capabilities of a neural network with dynamically adjusted weights, and zero convergence of the learning error in a finite time. The performance of the considered networks is tested in terms of solving a tracking problem of a sine signal.
| Idioma original | Inglés |
|---|---|
| Páginas | 548-552 |
| Número de páginas | 5 |
| Estado | Publicada - 1996 |
| Publicado de forma externa | Sí |
| Evento | Proceedings of the 1996 IEEE International Symposium on Intelligent Control - Dearborn, MI, USA Duración: 15 sep. 1996 → 18 sep. 1996 |
Conferencia
| Conferencia | Proceedings of the 1996 IEEE International Symposium on Intelligent Control |
|---|---|
| Ciudad | Dearborn, MI, USA |
| Período | 15/09/96 → 18/09/96 |