Trapezium-type inequalities for an extension of riemann–liouville fractional integrals using raina’s special function and generalized coordinate convex functions

Miguel Vivas-Cortez*, Artion Kashuri, Rozana Liko, Jorge Eliecer Hernández Hernández

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

In this paper, the authors analyse and study some recent publications about integral inequalities related to generalized convex functions of several variables and the use of extended fractional integrals. In particular, they establish a new Hermite–Hadamard inequality for generalized coordinate ϕ-convex functions via an extension of the Riemann–Liouville fractional integral. Furthermore, an interesting identity for functions with two variables is obtained, and with the use of it, some new extensions of trapezium-type inequalities using Raina’s special function via generalized coordinate ϕ-convex functions are developed. Various special cases have been studied. At the end, a brief conclusion is given as well.

Idioma originalInglés
Número de artículo117
Páginas (desde-hasta)1-17
Número de páginas17
PublicaciónAxioms
Volumen9
N.º4
DOI
EstadoPublicada - 15 oct. 2020

Nota bibliográfica

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Financiación

FinanciadoresNúmero del financiador
Pontificia Universidad Católica del Ecuador

    Huella

    Profundice en los temas de investigación de 'Trapezium-type inequalities for an extension of riemann–liouville fractional integrals using raina’s special function and generalized coordinate convex functions'. En conjunto forman una huella única.

    Citar esto