Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions

Shahram Rezapour, Sabri T.M. Thabet, Ava Sh Rafeeq, Imed Kedim, Miguel Vivas-Cortez, Nasser Aghazadeh

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

5 Citas (Scopus)

Resumen

This research manuscript aims to study a novel implicit differential equation in the non-singular fractional derivatives sense, namely Atangana-Baleanu-Caputo (ABC) of arbitrary orders belonging to the interval (2, 3] with respect to another positive and increasing function. The major results of the existence and uniqueness are investigated by utilizing the Banach and topology degree theorems. The stability of the Ulam-Hyers (UH) type is analyzed by employing the topics of nonlinear analysis. Finally, two examples are constructed and enhanced with some special cases as well as illustrative graphics for checking the influence of major outcomes.

Idioma originalInglés
Número de artículoe0300590
PublicaciónPLoS ONE
Volumen19
N.º7 July
DOI
EstadoPublicada - jul. 2024

Nota bibliográfica

Publisher Copyright:
Copyright: © 2024 Rezapour et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Huella

Profundice en los temas de investigación de 'Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions'. En conjunto forman una huella única.

Citar esto