Resumen
The objective of this research was to provide a prediction system for the possibility of student dropout at the Pontificia Universidad Católica del Ecuador Sede Ibarra. It is applied research with a mixed approach. It was developed in two phases. In the first phase, the KDD methodology and the Scikit-Learn tool were applied to select the best prediction algorithm (KNN, Decision Tree, Random Forest, SVM, and Neural Network). In the second phase, the information system was built to make use of the model obtained in the first phase, where users will be able to consult the possibility of risks of academic dropout of students. Technologies such as Django, Python, HTML, JavaScript, and MySQL, among others, were used in this study. The results show an information system that allows consultation by the student, by the level of schooling, or by subject, based on neural networks that provide an accuracy of 92%.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Communication and Applied Technologies - Proceedings of ICOMTA 2022 |
Editores | Paulo Carlos López-López, Ángel Torres-Toukoumidis, Andrea De-Santis, Óscar Avilés, Daniel Barredo |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 3-12 |
Número de páginas | 10 |
ISBN (versión impresa) | 9789811963469 |
DOI | |
Estado | Publicada - 2023 |
Evento | International Conference on Communication and Applied Technologies, ICOMTA 2022 - Cuenca, Ecuador Duración: 7 sep. 2022 → 9 sep. 2022 |
Serie de la publicación
Nombre | Smart Innovation, Systems and Technologies |
---|---|
Volumen | 318 |
ISSN (versión impresa) | 2190-3018 |
ISSN (versión digital) | 2190-3026 |
Conferencia
Conferencia | International Conference on Communication and Applied Technologies, ICOMTA 2022 |
---|---|
País/Territorio | Ecuador |
Ciudad | Cuenca |
Período | 7/09/22 → 9/09/22 |
Nota bibliográfica
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.