STOCHASTIC OPTICAL BLOCH EQUATIONS IN COMPLEX SYSTEM WITH VIBRONIC COUPLING: USE OF NOVIKOV'S THEOREM: Use of Novikov's theorem

J. L. Paz, Fernando Moncada, Eleana Ruiz-Hinojosa, Y. J. Alvarado, Luis Lascano, Lenys Fernández, Patricio Espinoza-Montero, César Costa-Vera

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

We analyze the statistical averages over a set of realizations of the random variable in the Stochastic Optical Bloch equations, using Novikov's sufficient condition theorem. We consider a system on an adiabatic basis interacting with an external field in the presence of a thermal reservoir. We analyzed both for delta-correlated functions (white noise) and situations associated with Ornstein-Uhlenbeck processes (OUP) in colored noise. The effects of thermal reservoir and intramolecular coupling generate an effective transversal relaxation time. In the case of white noise, the resulting optical Bloch equations can be solved algebraically, unlike colored noise cases that requires numerical techniques.

Idioma originalInglés
Número de artículo138000
PublicaciónChemical Physics Letters
Volumen760
DOI
EstadoPublicada - dic. 2020

Nota bibliográfica

Publisher Copyright:
© 2020 Elsevier B.V.

Huella

Profundice en los temas de investigación de 'STOCHASTIC OPTICAL BLOCH EQUATIONS IN COMPLEX SYSTEM WITH VIBRONIC COUPLING: USE OF NOVIKOV'S THEOREM: Use of Novikov's theorem'. En conjunto forman una huella única.

Citar esto