Spatially-explicit testing of a general aboveground carbon density estimation model in a western Amazonian forest using airborne LiDAR

Patricio Xavier Molina, Gregory P. Asner, Mercedes Farjas Abadía, Juan Carlos Ojeda Manrique, Luis Alberto Sánchez Diez, Renato Valencia

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

Mapping aboveground carbon density in tropical forests can support CO2 emission monitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador's Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg.C. ha-1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.

Idioma originalInglés
Número de artículo9
PublicaciónRemote Sensing
Volumen8
N.º1
DOI
EstadoPublicada - 2016

Nota bibliográfica

Publisher Copyright:
© 2015 by the authors; licensee MDPI, Basel, Switzerland.

Huella

Profundice en los temas de investigación de 'Spatially-explicit testing of a general aboveground carbon density estimation model in a western Amazonian forest using airborne LiDAR'. En conjunto forman una huella única.

Citar esto