Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application

Tariq Nawaz, Miguel Vivas-Cortez*, Artion Kashuri, Muhammad Raees, Azeem Shahzad

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

Resumen

This study reveals the error analysis of Hermite-Hadamard inequality for coordinated convexity related to post-quantum integrals. At first, we establish a multi-parameter identity pertaining coordinated convexity via post-quantum integrals followed by new integrals to construct our main results. By utilizing this generic identity, we analyze the error estimates of classical Hermite-Hadamard inequality in the post-quantum context. Application of power mean inequality enables the refinement of bounds involved and extends it further. We make use of graphical representation with the help of concrete examples to verify the validity of presented results. In the end, to focus on usability and significance of the results, two applications through polynomial functions are produced.

Idioma originalInglés
Páginas (desde-hasta)101-123
Número de páginas23
PublicaciónJournal of Mathematics and Computer Science
Volumen40
N.º1
DOI
EstadoPublicada - 2025

Nota bibliográfica

Publisher Copyright:
© 2026. All rights reserved.

Financiación

    Huella

    Profundice en los temas de investigación de 'Some novel estimates of Hermite-Hadamard type inequality for post-quantum integrals involving coordinated convex functions and application'. En conjunto forman una huella única.

    Citar esto