Some new q-integral inequalities using generalized quantum montgomery identity via preinvex functions

Miguel Vivas-Cortez, Artion Kashuri, Rozana Liko, Jorge E.Hernández Hernández

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

20 Citas (Scopus)

Resumen

In this work the authors establish a new generalized version of Montgomery's identity in the setting of quantum calculus. From this result, some new estimates of Ostrowski type inequalities are given using preinvex functions. Given the generality of preinvex functions, particular q-integral inequalities are established with appropriate choice of the parametric bifunction. Some new special cases from the main results are obtained and some known results are recaptured as well. At the end, a briefly conclusion is given.

Idioma originalInglés
Número de artículo553
PublicaciónSymmetry
Volumen12
N.º4
DOI
EstadoPublicada - 4 abr. 2020

Nota bibliográfica

Publisher Copyright:
© 2020 by the authors.

Huella

Profundice en los temas de investigación de 'Some new q-integral inequalities using generalized quantum montgomery identity via preinvex functions'. En conjunto forman una huella única.

Citar esto