Some new hermite-hadamard-fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions

Humaira Kalsoom, Muhammad Amer Latif, Zareen A. Khan, Miguel Vivas-Cortez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

25 Citas (Scopus)

Resumen

In this article, firstly, we establish a novel definition of weighted interval-valued fractional integrals of a function Ῠ using an another function ϑ(˙ζ). As an additional observation, it is noted that the new class of weighted interval-valued fractional integrals of a function Ῠ by employing an additional function ϑ(˙ζ) characterizes a variety of new classes as special cases, which is a generalization of the previous class. Secondly, we prove a new version of the Hermite-Hadamard-Fejér type inequality for h-convex interval-valued functions using weighted interval-valued fractional integrals of a function Ῠ according to another function ϑ(˙ζ). Finally, by using weighted interval-valued fractional integrals of a function Ῠ according to another function ϑ(˙ζ), we are establishing a new Hermite-Hadamard-Fejér type inequality for harmonically h-convex interval-valued functions that is not previously known. Moreover, some examples are provided to demonstrate our results.

Idioma originalInglés
Número de artículo74
PublicaciónMathematics
Volumen10
N.º1
DOI
EstadoPublicada - 26 dic. 2021

Nota bibliográfica

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Citar esto