Some inequalities using generalized convex functions in quantum analysis

Miguel J. Vivas-Cortez, Artion Kashuri, Rozana Liko, Jorge E.Hernández Hernández

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

22 Citas (Scopus)

Resumen

In the present work, the Hermite-Hadamard inequality is established in the setting of quantum calculus for a generalized class of convex functions depending on three parameters: a number in (0, 1] and two arbitrary real functions defined on [0, 1]. From the proven results, various inequalities of the same type are deduced for other types of generalized convex functions and the methodology used reveals, in a sense, a symmetric mathematical phenomenon. In addition, the definition of dominated convex functions with respect to the generalized class of convex functions aforementioned is introduced, and some integral inequalities are established.

Idioma originalInglés
Número de artículo1402
PublicaciónSymmetry
Volumen11
N.º11
DOI
EstadoPublicada - 1 nov. 2019

Nota bibliográfica

Publisher Copyright:
© 2019 by the authors.

Citar esto