Sliding mode-based adaptive learning in dynamical-filter-weights neurons

Hebertt Sira-Ramírez*, Eliezer Colina-Morles, Francklin Rivas-Echeverría

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

A sliding mode control strategy is proposed for the synthesis of an adaptive learning algorithm in a neuron whose weights are constituted by first-order dynamical filters with adjustable parameters, which in turn allows the representation of dynamical processes in terms of a set of such neurons. The approach is shown to exhibit robustness characteristics and fast convergence properties. A simulation example, dealing with an analog signal tracking task, is provided which illustrates the feasibility of the approach.

Idioma originalInglés
Páginas (desde-hasta)678-685
Número de páginas8
PublicaciónInternational Journal of Control
Volumen73
N.º8
DOI
EstadoPublicada - 20 may. 2000

Financiación

FinanciadoresNúmero del financiador
Consejo de Desarrollo CientÂõI61-1--029A.-8

    Huella

    Profundice en los temas de investigación de 'Sliding mode-based adaptive learning in dynamical-filter-weights neurons'. En conjunto forman una huella única.

    Citar esto