Resumen
In the contemporary information age, knowledge extraction from vast textual datasets become essential. Named Entity Recognition (NER) models emerge as fundamental tools for this task, focusing on identifying key elements, i.e., entities. This study is based on a ‘spaCy’s-es_core_news_lg’ NER model focusing on the geo-positioning of entities in publications related to security analysis in Ecuador. During increasing violence in the country, this work aims to improve situational awareness through NER models, enabling agile and effective responses from authorities. Geo-analysis of publications from the social network X (Twitter) is used, with a model that facilitates understanding through graphs, visualizing the distribution of security cases and violence in various sectors of Ecuador. The methodology adopted uses a modular pipeline, prioritizing the cleaning of text to enhance the precision of the results. The creation of density maps and spatial trend analysis supports the application of NER in the geolocation of entities. These results are anticipated to improve performance in critical areas such as trend analysis, information extraction, and thematic labeling, strengthening the ability to make informed decisions in crucial situations.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings of the Future Technologies Conference (FTC) 2024 |
Editores | Kohei Arai |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 178-196 |
Número de páginas | 19 |
ISBN (versión impresa) | 9783031731242 |
DOI | |
Estado | Publicada - 2024 |
Evento | 9th Future Technologies Conference, FTC 2024 - London, Reino Unido Duración: 14 nov. 2024 → 15 nov. 2024 |
Serie de la publicación
Nombre | Lecture Notes in Networks and Systems |
---|---|
Volumen | 1156 LNNS |
ISSN (versión impresa) | 2367-3370 |
ISSN (versión digital) | 2367-3389 |
Conferencia
Conferencia | 9th Future Technologies Conference, FTC 2024 |
---|---|
País/Territorio | Reino Unido |
Ciudad | London |
Período | 14/11/24 → 15/11/24 |
Nota bibliográfica
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.