Quantum estimates of ostrowski inequalities for generalized ϕ-convex functions

Miguel J. Vivas-Cortez, Artion Kashuri, Rozana Liko, Jorge E.Hernández Hernández

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

25 Citas (Scopus)

Resumen

In this paper, the study is focused on the quantum estimates of Ostrowski type inequalities for q-differentiable functions involving the special function introduced by R.K. Raina which depends on certain parameters. Our methodology involves Jackson's q-integral, the basic concepts of quantum calculus, and a generalization of a class of special functions used in the frame of convex sets and convex functions. As a main result, some quantum estimates for the aforementioned inequality are established and some cases involving the special hypergeometric and Mittag-Leffler functions have been studied and some known results are deduced.

Idioma originalInglés
Número de artículo1513
PublicaciónSymmetry
Volumen11
N.º12
DOI
EstadoPublicada - 1 dic. 2019

Nota bibliográfica

Publisher Copyright:
© 2019 by the authors.

Huella

Profundice en los temas de investigación de 'Quantum estimates of ostrowski inequalities for generalized ϕ-convex functions'. En conjunto forman una huella única.

Citar esto