Properties and Applications of Symmetric Quantum Calculus

Miguel Vivas-Cortez, Muhammad Zakria Javed, Muhammad Uzair Awan, Silvestru Sever Dragomir, Ahmed M. Zidan

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Symmetric derivatives and integrals are extensively studied to overcome the limitations of classical derivatives and integral operators. In the current investigation, we explore the quantum symmetric derivatives on finite intervals. We introduced the idea of right quantum symmetric derivatives and integral operators and studied various properties of both operators as well. Using these concepts, we deliver new variants of Young’s inequality, Hölder’s inequality, Minkowski’s inequality, Hermite–Hadamard’s inequality, Ostrowski’s inequality, and Gruss–Chebysev inequality. We report the Hermite–Hadamard’s inequalities by taking into account the differentiability of convex mappings. These fundamental results are pivotal to studying the various other problems in the field of inequalities. The validation of results is also supported with some visuals.

Idioma originalInglés
Número de artículo107
PublicaciónFractal and Fractional
Volumen8
N.º2
DOI
EstadoPublicada - 12 feb. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Huella

Profundice en los temas de investigación de 'Properties and Applications of Symmetric Quantum Calculus'. En conjunto forman una huella única.

Citar esto