On the Generalized θ(t)-Fibonacci sequences and its bifurcation analysis

Rajiniganth Pandurangan, Sabri T.M. Thabet, Imed Kedim, Miguel Vivas-Cortez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This paper introduces a general nabla operator of order two that includes coefficients of various trigonometric functions. We also introduce its inverse, which leads us to derive the second-order θ(t)-Fibonacci polynomial, sequence, and its summation. Here, we have obtained the derivative of the θ(t)-Fibonacci polynomial using a proportional derivative. Furthermore, this study presents derived theorems and intriguing findings on the summation of terms in the second-order Fibonacci sequence, and we have investigated the bifurcation analysis of the θ(t)-Fibonacci generating function. In addition, we have included appropriate examples to demonstrate our findings by using MATLAB.

Idioma originalInglés
Páginas (desde-hasta)972-987
Número de páginas16
PublicaciónAIMS Mathematics
Volumen10
N.º1
DOI
EstadoPublicada - 2025

Nota bibliográfica

Publisher Copyright:
© 2025 the Author(s), licensee AIMS Press.

Citar esto