On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities

Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this work, we introduce generalized Raina fractional integral operators and derive Chebyshev-type inequalities involving these operators. In a first stage, we obtain Chebyshev-type inequalities for one product of functions. Then we extend those results to account for arbitrary products. Also, we establish some inequalities of the Chebyshev type for functions whose derivatives are bounded. In addition, we derive an estimate for the Chebyshev functional by applying the generalized Raina fractional integral operators. As corollaries of this study, some known results are recaptured from our general Chebyshev inequalities. The results of this work may prove useful in the theoretical analysis of numerical models to solve generalized Raina-type fractional-order integro-differential equations.

Idioma originalInglés
Páginas (desde-hasta)10256-10275
Número de páginas20
PublicaciónAIMS Mathematics
Volumen7
N.º6
DOI
EstadoPublicada - 22 mar. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 the Author(s), licensee AIMS Press.

Huella

Profundice en los temas de investigación de 'On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities'. En conjunto forman una huella única.

Citar esto