On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform

Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T.M. Thabet, Imed Kedim, Miguel Vivas-Cortez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

In this article, we employ the Laplace transform (LT) method to study fractional differential equations with the problem of displacement of motion of mass for free oscillations, damped oscillations, damped forced oscillations, and forced oscillations (without damping). These problems are solved by using the Caputo and Atangana-Baleanu (AB) fractional derivatives, which are useful fractional derivative operators consist of a non-singular kernel and are efficient in solving non-local problems. The mathematical modelling for the displacement of motion of mass is presented in fractional form. Moreover, some examples are solved.

Idioma originalInglés
Páginas (desde-hasta)32629-32645
Número de páginas17
PublicaciónAIMS Mathematics
Volumen9
N.º11
DOI
EstadoPublicada - 2024

Nota bibliográfica

Publisher Copyright:
© 2024 the Author(s).

Citar esto