Proyectos por año
Resumen
Local fractional integral inequalities of Hermite-Hadamard type involving local fractional integral operators with Mittag-Leffler kernel have been previously studied for generalized convexities and preinvexities. In this article, we analyze Hermite-Hadamard-type local fractional integral inequalities via generalized (h 1, h 2)-preinvex function comprising local fractional integral operators and Mittag-Leffler kernel. In addition, two examples are discussed to ensure that the derived consequences are correct. As an application, we construct an inequality to establish central moments of a random variable.
Idioma original | Inglés |
---|---|
Número de artículo | 20220216 |
Publicación | Demonstratio Mathematica |
Volumen | 56 |
N.º | 1 |
DOI | |
Estado | Publicada - 1 ene. 2023 |
Nota bibliográfica
Publisher Copyright:© 2023 the author(s), published by De Gruyter.
Huella
Profundice en los temas de investigación de 'On local fractional integral inequalities via generalized (h 1, h 2)-preinvexity involving local fractional integral operators with Mittag-Leffler kernel'. En conjunto forman una huella única.Proyectos
- 1 Terminado
-
RESULTADOS CUALITATIVOS DE ECUACIONES DIFERENCIALES FRACCIONARIAS LOCALES Y DESIGUALDADES INTEGRALES
Delgado Noboa, A. C. (Investigador principal), RANGEL OLIVEROS, Y. C. (Investigador principal), NÁPOLES VALDÉS, J. (Investigador Externo), VELASCO VELASCO, J. (Investigador Externo) & Vivas Cortez, M. J. (Director)
15/03/22 → 16/03/24
Proyecto: Investigación