On local fractional integral inequalities via generalized (h 1, h 2)-preinvexity involving local fractional integral operators with Mittag-Leffler kernel

Miguel Vivas-Cortez, Maria Bibi, Muhammad Muddassar, Sa'Ud Al-Sa'Di

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

Local fractional integral inequalities of Hermite-Hadamard type involving local fractional integral operators with Mittag-Leffler kernel have been previously studied for generalized convexities and preinvexities. In this article, we analyze Hermite-Hadamard-type local fractional integral inequalities via generalized (h 1, h 2)-preinvex function comprising local fractional integral operators and Mittag-Leffler kernel. In addition, two examples are discussed to ensure that the derived consequences are correct. As an application, we construct an inequality to establish central moments of a random variable.

Idioma originalInglés
Número de artículo20220216
PublicaciónDemonstratio Mathematica
Volumen56
N.º1
DOI
EstadoPublicada - 1 ene. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 the author(s), published by De Gruyter.

Huella

Profundice en los temas de investigación de 'On local fractional integral inequalities via generalized (h 1, h 2)-preinvexity involving local fractional integral operators with Mittag-Leffler kernel'. En conjunto forman una huella única.

Citar esto