On Generalization of Different Integral Inequalities for Harmonically Convex Functions

Jiraporn Reunsumrit, Miguel J. Vivas-Cortez, Muhammad Aamir Ali, Thanin Sitthiwirattham

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this study, we first prove a parameterized integral identity involving differentiable functions. Then, for differentiable harmonically convex functions, we use this result to establish some new inequalities of a midpoint type, trapezoidal type, and Simpson type. Analytic inequalities of this type, as well as the approaches for solving them, have applications in a variety of domains where symmetry is important. Finally, several particular cases of recently discovered results are discussed, as well as applications to the special means of real numbers.

Idioma originalInglés
Número de artículo302
PublicaciónSymmetry
Volumen14
N.º2
DOI
EstadoPublicada - 2 feb. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Huella

Profundice en los temas de investigación de 'On Generalization of Different Integral Inequalities for Harmonically Convex Functions'. En conjunto forman una huella única.

Citar esto