On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions

Ava Sh Rafeeq, Sabri T.M. Thabet, Mohammed O. Mohammed, Imed Kedim, Miguel Vivas-Cortez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

This manuscript aims to study the effectiveness of two different levels of fractional orders in the frame of Caputo-Hadamard (CH)-derivatives on a special type class of delay problem supplemented by Dirichlet boundary conditions. The corresponding Hadamard fractional integral equation is derived for a proposed CH-fractional pantograph system. The Banach, Schaefer, and Krasnoselskii fixed point theorems (FPTs), are used to investigate sufficient conditions of the existence and uniqueness theorems for the proposed system. Furthermore, the Green functions properties are investigated and used to discuss the Ulam-Hyers (UH) stability and its generalized by utilizing nonlinear analysis topics. Finally, three mathematical examples are provided with numerical results and figures by using Matlab software to illustrate the validity of our findings.

Idioma originalInglés
Páginas (desde-hasta)386-398
Número de páginas13
PublicaciónAlexandria Engineering Journal
Volumen86
DOI
EstadoPublicada - 6 dic. 2023

Nota bibliográfica

Publisher Copyright:
© 2023 The Author(s)

Huella

Profundice en los temas de investigación de 'On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions'. En conjunto forman una huella única.

Citar esto