New extensions of Hermite-Hadamard and Fejér type inequalities using fuzzy fractional integral operators through different fuzzy convexities

Rana Safdar Ali, Miguel Vivas-Cortez*, Artion Kashuri, Naila Talib

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

Resumen

It is a familiar fact to develop inequalities using the popular method by adopting fractional operators, and such study of methods is the main core of modern research in recent year. Fuzzy interval valued (FIV) mappings not only used to generalize of different convex mappings but also developed fractional operators. In this paper, we investigate fuzzy fractional inequalities for different fuzzy convexities by successfully implementing generalized fuzzy fractional operators (G-FFO). We discuss the extension of Hermite–Hadamard, trapezoid-type inequalities on the basis of fuzzy convexities and fuzzy fractional operators. Moreover, we establish the Fejér and midpoint type fuzzy inequalities for (η1, η2)-convex fuzzy function.

Idioma originalInglés
Páginas (desde-hasta)456-480
Número de páginas25
PublicaciónJournal of Mathematics and Computer Science
Volumen40
N.º4
DOI
EstadoPublicada - 29 jul. 2025

Nota bibliográfica

Publisher Copyright:
© 2026, International Scientific Research Publications. All rights reserved.

Financiación

Financiadores
La derivada Fraccional Generalizada

    Citar esto