TY - JOUR
T1 - Multiscale phenological niches of seed fall in diverse Amazonian plant communities
AU - Pak, Damie
AU - Swamy, Varun
AU - Alvarez-Loayza, Patricia
AU - Cornejo-Valverde, Fernando
AU - Queenborough, Simon A.
AU - Metz, Margaret R.
AU - Terborgh, John
AU - Valencia, Renato
AU - Wright, S. Joseph
AU - Garwood, Nancy C.
AU - Lasky, Jesse R.
N1 - Publisher Copyright:
© 2023 The Ecological Society of America.
PY - 2023/3/8
Y1 - 2023/3/8
N2 - Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6-month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.
AB - Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long-term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole-community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind-dispersed species exhibited significant synchrony at ~6-month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale-specificity and time-localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.
UR - http://www.scopus.com/inward/record.url?scp=85151414660&partnerID=8YFLogxK
M3 - Article
C2 - 36890666
AN - SCOPUS:85151414660
SN - 0012-9658
JO - Ecology
JF - Ecology
ER -