Resumen
An element of great importance for university educational institutions, educators and students is the academic performance of them in the transition of their professional training. The mining of educational data develops models and methods to explore the data collected from the educational learning environments through learning analytics in order to detect patterns that allow predicting variables of interest. The present research describes a predictive model of academic performance using neural network techniques on a set of real data of 300 students of the Systems career of the Central University of Ecuador. This registration was provided by the virtual learning environment https://uvirtual.uce.edu.ec/developed in Moodle and used in said University.
Título traducido de la contribución | Model to predict academic performance based on neural networks and learning analytics |
---|---|
Idioma original | Español (Ecuador) |
Páginas (desde-hasta) | 258-266 |
Número de páginas | 9 |
Publicación | RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao |
N.º | E17 |
Estado | Publicada - 1 ene. 2019 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© 2019, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.
Financiación
Financiadores | Número del financiador |
---|---|
Universidade Paranaense |
Palabras clave
- Academic performance
- Big data
- Learning analytics
- Neural networks