Long-term prediction of bearing condition by the neo-fuzzy neuron

A. Soualhi, G. Clerc, H. Razik, F. Rivas

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

19 Citas (Scopus)

Resumen

Rolling element bearings are devices used in almost every electrical machine. Therefore, it is important to monitor and track the degradation of bearings. This paper presents a new approach to predict the degradation of bearings by a time series forecasting model called the neo-fuzzy neuron. The proposed approach uses the root mean square extracted from vibration signals as a health indicator. The root mean square is used here as an input of the neo-fuzzy neuron in order to estimate the evolution of bearing's degradation in time. Experimental degradation data provided by the University of Cincinnati is used to validate the proposed approach. A comparative study between the neo-fuzzy neuron and the adaptive neuro-fuzzy inference system is carried out to appraise their prediction capabilities. The experimental results show that the neo-fuzzy model can track the degradation of bearings.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2013
EditorialIEEE Computer Society
Páginas586-591
Número de páginas6
ISBN (versión impresa)9781479900251
DOI
EstadoPublicada - 2013
Publicado de forma externa
Evento2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2013 - Valencia, Espana
Duración: 27 ago. 201330 ago. 2013

Serie de la publicación

NombreProceedings - 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2013

Conferencia

Conferencia2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED 2013
País/TerritorioEspana
CiudadValencia
Período27/08/1330/08/13

Huella

Profundice en los temas de investigación de 'Long-term prediction of bearing condition by the neo-fuzzy neuron'. En conjunto forman una huella única.

Citar esto