IoT device for detecting abnormal vibrations in motors using TinyML

Stalin Arciniegas, Dulce Rivero, Jefferson Piñan, Elizabeth Diaz*, Francklin Rivas

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This paper presents an innovative approach to motor bearing fault detection using TinyML on an IoT device. We developed a system that integrates spectral analysis and deep learning on a resource-constrained edge device, enabling real-time monitoring and anomaly detection. Our method achieves 96.5(% accuracy in laboratory outperforming baseline Random Forest and SVM models. The system's low latency (300 ms from data collection to alert generation) and computational efficiency make it suitable for real-time industrial applications. We address challenges such as environmental noise and connectivity issues and discuss future directions including multi-modal sensor integration and federated learning. This research contributes to the growing field of edge AI for predictive maintenance, demonstrating the viability of sophisticated machine learning models on low-power microcontrollers.

Idioma originalInglés
Número de artículo41
PublicaciónDiscover Internet of Things
Volumen5
N.º1
DOI
EstadoPublicada - 16 abr. 2025

Nota bibliográfica

Publisher Copyright:
© The Author(s) 2025.

Huella

Profundice en los temas de investigación de 'IoT device for detecting abnormal vibrations in motors using TinyML'. En conjunto forman una huella única.

Citar esto