TY - JOUR
T1 - Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions
T2 - Comparison with common carotenoids
AU - Sy, Charlotte
AU - Caris-Veyrat, Catherine
AU - Dufour, Claire
AU - Boutaleb, Malika
AU - Borel, Patrick
AU - Dangles, Olivier
PY - 2013/5
Y1 - 2013/5
N2 - Newly identified spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1, are sources of carotenoids (mainly 15 yellow and orange pigments and 13 pink pigments, respectively) with original structures. These bacterial carotenoids were evaluated for their ability to inhibit the iron-induced peroxidation of linoleic acid micelles, or sunflower oil-in-water emulsions, in comparison with β-carotene, lycopene and astaxanthin. Lipid peroxidation was carried out in acidic conditions and initiated by dietary heme or non-heme iron (metmyoglobin or FeII, respectively) so as to simply simulate the postprandial gastric medium, a possible site for dietary oxidative stress. Lipid hydroperoxide formation and carotenoid consumption were followed by UV-vis spectroscopy and appropriate indicators of the antioxidant activity were estimated in each model. The bacterial carotenoids were found to be better inhibitors of heme-induced lipid peroxidation than the reference carotenoids as a likely consequence of their location closer to the interface in micelles and lipid droplets. However, this trend was not confirmed in lipid peroxidation induced by non-heme iron, possibly because of the redox recycling of Fe II by carotenoids. The quantitative kinetic analysis of the peroxidation curves suggests that the carotenoids mainly inhibit the propagation phase of lipid peroxidation by direct scavenging of the lipid peroxyl radicals, in agreement with independent experiments showing that carotenoids are unable to reduce the one-electron oxidized form of metmyoglobin (ferrylmyoglobin), a model of initiating species in heme-induced lipid peroxidation. Overall, carotenoids from Bacillus indicus HU36 and Bacillus firmus GB1 were found to be interesting antioxidants to fight postprandial oxidative stress in the stomach.
AB - Newly identified spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1, are sources of carotenoids (mainly 15 yellow and orange pigments and 13 pink pigments, respectively) with original structures. These bacterial carotenoids were evaluated for their ability to inhibit the iron-induced peroxidation of linoleic acid micelles, or sunflower oil-in-water emulsions, in comparison with β-carotene, lycopene and astaxanthin. Lipid peroxidation was carried out in acidic conditions and initiated by dietary heme or non-heme iron (metmyoglobin or FeII, respectively) so as to simply simulate the postprandial gastric medium, a possible site for dietary oxidative stress. Lipid hydroperoxide formation and carotenoid consumption were followed by UV-vis spectroscopy and appropriate indicators of the antioxidant activity were estimated in each model. The bacterial carotenoids were found to be better inhibitors of heme-induced lipid peroxidation than the reference carotenoids as a likely consequence of their location closer to the interface in micelles and lipid droplets. However, this trend was not confirmed in lipid peroxidation induced by non-heme iron, possibly because of the redox recycling of Fe II by carotenoids. The quantitative kinetic analysis of the peroxidation curves suggests that the carotenoids mainly inhibit the propagation phase of lipid peroxidation by direct scavenging of the lipid peroxyl radicals, in agreement with independent experiments showing that carotenoids are unable to reduce the one-electron oxidized form of metmyoglobin (ferrylmyoglobin), a model of initiating species in heme-induced lipid peroxidation. Overall, carotenoids from Bacillus indicus HU36 and Bacillus firmus GB1 were found to be interesting antioxidants to fight postprandial oxidative stress in the stomach.
UR - https://www.scopus.com/pages/publications/84877312269
U2 - 10.1039/c3fo30334a
DO - 10.1039/c3fo30334a
M3 - Article
C2 - 23411789
AN - SCOPUS:84877312269
SN - 2042-6496
VL - 4
SP - 698
EP - 712
JO - Food and Function
JF - Food and Function
IS - 5
ER -