Identification of transient seismo-acoustic signals from crashing ocean waves: template matching and location of discrete surf events

Jeremy W. Francoeur*, Robin S. Matoza*, Hugo D. Ortiz*, Rodrigo De Negri*

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

Resumen

Crashing ocean waves, or surf, have previously been identified as persistent generators of coherent infrasound signals from 0.5 to 20 Hz. Here, we demonstrate that infrasonic and seismic (seismo-acoustic) signals from surf are composed of repetitive transient events which can be detected and characterized using template matching. Using data collected from a series of field experiments designed to study seismo-acoustic surf signals in Santa Barbara, California, we show that source regions of these events can be constrained primarily to just offshore of a local coastal headland using a reverse-time-migration implementation on a small spatial scale (<5 km2). Our data include one continuously running infrasound sensor (September 2022–July 2023) to examine temporal signal evolution, complemented by several short-duration campaigns involving various infrasound arrays, co-located seismometers and video recordings. Throughout varied oceanographic and atmospheric conditions, we detect up to tens of thousands of independent surf repeaters per day over the course of a year. The amplitudes of detected infrasound signals are correlated with offshore significant wave height and local wind speed. We identify coincident arrivals of seismic and infrasound signals with similar spectral characteristics, suggesting a linked source mechanism locally producing both the seismic and acoustic transient signals. Source regions estimated from array- and network-based methods correspond to the surf zone as seen in video footage, and the directions of selected transient signals align with the location of a rocky reef shelf nearshore. This work showcases the ability to extract near-real-time information about the coastal sea state from seismic and acoustic signal features.

Idioma originalInglés
Número de artículoggaf317
PublicaciónGeophysical Journal International
Volumen243
N.º2
DOI
EstadoPublicada - 1 nov. 2025
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© The Author(s) 2025. Published by Oxford University Press on behalf of The Royal Astronomical Society.

Financiación

Financiadores
Toshiro Tanimoto
University of California
University of California, Santa Barbara

    Huella

    Profundice en los temas de investigación de 'Identification of transient seismo-acoustic signals from crashing ocean waves: template matching and location of discrete surf events'. En conjunto forman una huella única.

    Citar esto