Hyperbolic Non-Polynomial Spline Approach for Time-Fractional Coupled KdV Equations: A Computational Investigation

Miguel Vivas-Cortez, Majeed A. Yousif, Pshtiwan Othman Mohammed, Alina Alb Lupas, Ibrahim S. Ibrahim, Nejmeddine Chorfi

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

The time-fractional coupled Korteweg–De Vries equations (TFCKdVEs) serve as a vital framework for modeling diverse real-world phenomena, encompassing wave propagation and the dynamics of shallow water waves on a viscous fluid. This paper introduces a precise and resilient numerical approach, termed the Conformable Hyperbolic Non-Polynomial Spline Method (CHNPSM), for solving TFCKdVEs. The method leverages the inherent symmetry in the structure of TFCKdVEs, exploiting conformable derivatives and hyperbolic non-polynomial spline functions to preserve the equations’ symmetry properties during computation. Additionally, first-derivative finite differences are incorporated to enhance the method’s computational accuracy. The convergence order, determined by studying truncation errors, illustrates the method’s conditional stability. To validate its performance, the CHNPSM is applied to two illustrative examples and compared with existing methods such as the meshless spectral method and Petrov–Galerkin method using error norms. The results underscore the CHNPSM’s superior accuracy, showcasing its potential for advancing numerical computations in the domain of TFCKdVEs and preserving essential symmetries in these physical systems.

Idioma originalInglés
Número de artículo1610
PublicaciónSymmetry
Volumen16
N.º12
DOI
EstadoPublicada - dic. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Huella

Profundice en los temas de investigación de 'Hyperbolic Non-Polynomial Spline Approach for Time-Fractional Coupled KdV Equations: A Computational Investigation'. En conjunto forman una huella única.

Citar esto