Resumen
Integral inequalities involving many fractional integral operators are used to solve various fractional differential equations. In the present paper, we will generalize the Hermite–Jensen–Mercer-type inequalities for an h-convex function via a Caputo–Fabrizio fractional integral. We develop some novel Caputo–Fabrizio fractional integral inequalities. We also present Caputo–Fabrizio fractional integral identities for differentiable mapping, and these will be used to give estimates for some fractional Hermite–Jensen–Mercer-type inequalities. Some familiar results are recaptured as special cases of our results.
| Idioma original | Inglés |
|---|---|
| Número de artículo | 269 |
| Publicación | Fractal and Fractional |
| Volumen | 5 |
| N.º | 4 |
| DOI | |
| Estado | Publicada - 10 dic. 2021 |
Nota bibliográfica
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Financiación
| Financiadores | Número del financiador |
|---|---|
| Direcci?n de Investigci?n in Ponticial Catholic University of Ecuador | |
| Dirección de Investigción in Ponticial Catholic University of Ecuador |