Hermite–jensen–mercer-type inequalities via caputo–fabrizio fractional integral for h-convex function

Miguel Vivas-Cortez*, Muhammad Shoaib Saleem, Sana Sajid, Muhammad Sajid Zahoor, Artion Kashuri

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

15 Citas (Scopus)

Resumen

Integral inequalities involving many fractional integral operators are used to solve various fractional differential equations. In the present paper, we will generalize the Hermite–Jensen–Mercer-type inequalities for an h-convex function via a Caputo–Fabrizio fractional integral. We develop some novel Caputo–Fabrizio fractional integral inequalities. We also present Caputo–Fabrizio fractional integral identities for differentiable mapping, and these will be used to give estimates for some fractional Hermite–Jensen–Mercer-type inequalities. Some familiar results are recaptured as special cases of our results.

Idioma originalInglés
Número de artículo269
PublicaciónFractal and Fractional
Volumen5
N.º4
DOI
EstadoPublicada - 10 dic. 2021

Nota bibliográfica

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Financiación

FinanciadoresNúmero del financiador
Direcci?n de Investigci?n in Ponticial Catholic University of Ecuador
Dirección de Investigción in Ponticial Catholic University of Ecuador

    Huella

    Profundice en los temas de investigación de 'Hermite–jensen–mercer-type inequalities via caputo–fabrizio fractional integral for h-convex function'. En conjunto forman una huella única.

    Citar esto