Heath Monitoring of Capacitors and Supercapacitors Using the Neo-Fuzzy Neural Approach

Abdenour Soualhi*, Maawad Makdessi, Ronan German, Francklin Rivas Echeverria, Hubert Razik, Ali Sari, Pascal Venet, Guy Clerc

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

81 Citas (Scopus)

Resumen

Despite their great improvements, reliability and availability of power electronic devices always remain a focus. In safety-critical equipment, where the occurrence of faults can generate catastrophic losses, health monitoring of most critical components is absolutely needed to avoid and prevent breakdowns. In this paper, a noninvasive health monitoring method is proposed. It is based on fuzzy logic and the neural network to estimate and predict the equivalent series resistance (ESR) and the capacitance (C) of capacitors and supercapacitors (SCs). This method, based on the neo-fuzzy neuron model, performs a real-time processing (time series prediction) of the measured device impedance and the degradation data provided by accelerated ageing tests. To prove the efficiency of the proposed method, two experiments are performed. The first one is dedicated to the estimation of the ESR and C for a set of 8 polymer film capacitors, while the second one is dedicated to the prediction of the ESR and C for a set of 18 SCs. The obtained results show that combining fuzzy logic and the neural network is an accurate approach for the health monitoring of capacitors and SCs.

Idioma originalInglés
Número de artículo7920296
Páginas (desde-hasta)24-34
Número de páginas11
PublicaciónIEEE Transactions on Industrial Informatics
Volumen14
N.º1
DOI
EstadoPublicada - ene. 2018
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2005-2012 IEEE.

Huella

Profundice en los temas de investigación de 'Heath Monitoring of Capacitors and Supercapacitors Using the Neo-Fuzzy Neural Approach'. En conjunto forman una huella única.

Citar esto