Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications

Saad Ihsan Butt, Miguel Vivas-Cortez, Hira Inam

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

We establish new conformable fractional Hermite-Hadamard (H–H) Mercer type inequalities for harmonically convex functions using the concept of support line. We introduce two new conformable fractional auxiliary equalities in the Mercer sense and apply them to differentiable functions with harmonic convexity. We also use Power-mean, Hölder’s and improved Hölder inequality to derive new Mercer type inequalities via conformable fractional integrals. The accuracy and superiority of the offered technique are clearly depicted through impactful visual illustrations. We also use our technique to derive new estimates for hypergeometric functions and special means of real numbers that are more precise than existing ones. Some applications are provided as well. Our results generalize and extend some existing ones in the literature.

Idioma originalInglés
Páginas (desde-hasta)385-416
Número de páginas32
PublicaciónMathematical and Computer Modelling of Dynamical Systems
Volumen30
N.º1
DOI
EstadoPublicada - 2024

Nota bibliográfica

Publisher Copyright:
© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Huella

Profundice en los temas de investigación de 'Harmonic conformable refinements of Hermite-Hadamard Mercer inequalities by support line and related applications'. En conjunto forman una huella única.

Citar esto