Resumen
In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by using the newly defined integrals. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities and Riemann-Liouville fractional H-H inequalities, and new k k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.
| Idioma original | Inglés |
|---|---|
| Páginas (desde-hasta) | 1887-1903 |
| Número de páginas | 17 |
| Publicación | Open Mathematics |
| Volumen | 20 |
| N.º | 1 |
| DOI | |
| Estado | Publicada - 31 dic. 2022 |
Nota bibliográfica
Publisher Copyright:© 2022 the author(s), published by De Gruyter.
Financiación
| Financiadores | Número del financiador |
|---|---|
| King Mongkut's University of Technology North Bangkok | KMUTNB-63-KNOW-018 |