Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions

Miguel J. Vivas-Cortez, Hasan Kara, Hüseyin Budak, Muhammad Aamir Ali, Saowaluck Chasreechai

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

In this article, we introduce the notions of generalized fractional integrals for the interval-valued functions (IVFs) of two variables. We establish Hermite-Hadamard (H-H) type inequalities and some related inequalities for co-ordinated convex IVFs by using the newly defined integrals. The fundamental benefit of these inequalities is that these can be turned into classical H-H inequalities and Riemann-Liouville fractional H-H inequalities, and new k k -Riemann-Liouville fractional H-H inequalities can be obtained for co-ordinated convex IVFs without having to prove each one separately.

Idioma originalInglés
Páginas (desde-hasta)1887-1903
Número de páginas17
PublicaciónOpen Mathematics
Volumen20
N.º1
DOI
EstadoPublicada - 31 dic. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 the author(s), published by De Gruyter.

Huella

Profundice en los temas de investigación de 'Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions'. En conjunto forman una huella única.

Citar esto