Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory

Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

We propose a new definition of the (Formula presented.) -convex stochastic processes (Formula presented.) using center and radius (Formula presented.) order with the notion of interval valued functions (Formula presented.). By utilizing this definition and Mean-Square Fractional Integrals, we generalize fractional Hermite–Hadamard–Mercer-type inclusions for generalized (Formula presented.) versions of convex, tgs-convex, P-convex, exponential-type convex, Godunova–Levin convex, s-convex, Godunova–Levin s-convex, h-convex, n-polynomial convex, and fractional n-polynomial (Formula presented.). Also, our work uses interesting examples of (Formula presented.) with Python-programmed graphs to validate our findings using an extension of Mercer’s inclusions with applications related to entropy and information theory.

Idioma originalInglés
Número de artículo408
PublicaciónFractal and Fractional
Volumen8
N.º7
DOI
EstadoPublicada - 11 jul. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 by the authors.

Huella

Profundice en los temas de investigación de 'Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory'. En conjunto forman una huella única.

Citar esto