FRACTAL INTEGRAL INEQUALITIES FOR GENERALIZED HARMONICALLY CONVEX FUNCTIONS USING LOCAL FRACTIONAL INTEGRALS AND RAINA’S MAPPING WITH RELATED APPLICATIONS

Lei Chen, Taha Radwan, Ahsan Fareed Shah, Miguel Vivas-Cortez*, Muhammad Shoaib Saleem

*Autor correspondiente de este trabajo

Producción científica: RevistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Fractional calculus has proved its worth in engineering and as well as in medicine, analyzing papilloma-virus infection, typhoid fever, myelogenous leukemia, monkeypox, dengue infection, hand–foot–mouth disease, zika virus, and lymphatic filariasis infection. Fractal sets famous for their complex geometric features have gained remarkable attention in the last few decades due to their applications in image processing, data compression, and signal analysis. Our work merges fractional calculus, fractal sets, convexity and integral inequalities to get a broader perspective of this area of research. The main goal of this study is to introduce a new notation for harmonically convex mappings (HCFs) called generalized ℧-exponential type HCFs over fractal space settings using Raina’s mapping. Various fractional variants of Hermite–Hadamard-type inequalities (HHJs) for this novel generalization cover the main section of this research. The graphical representations of the main results empower their validity. Finally, connecting findings with applications and the classical Mittag-Leffler mapping makes the study more enjoyable.

Idioma originalInglés
Número de artículo2540150
PublicaciónFractals
Volumen33
N.º8
DOI
EstadoPublicada - 2025

Nota bibliográfica

Publisher Copyright:
© 2025 The Author(s)

Financiación

FinanciadoresNúmero del financiador
Anhui Xinhua University
Pontificia Universidad Católica del Ecuador
Qassim University
Facultad de Ciencias Naturales y Exactas
Escuela de Ciencias Físicas y Matemáticas

    Huella

    Profundice en los temas de investigación de 'FRACTAL INTEGRAL INEQUALITIES FOR GENERALIZED HARMONICALLY CONVEX FUNCTIONS USING LOCAL FRACTIONAL INTEGRALS AND RAINA’S MAPPING WITH RELATED APPLICATIONS'. En conjunto forman una huella única.

    Citar esto