TY - JOUR
T1 - Flavonoid-serum albumin complexation
T2 - Determination of binding constants and binding sites by fluorescence spectroscopy
AU - Dufour, Claire
AU - Dangles, Olivier
PY - 2005/1/19
Y1 - 2005/1/19
N2 - After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol-albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin-albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-l-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1-15×10 4 M -1), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.
AB - After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol-albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin-albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-l-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1-15×10 4 M -1), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.
KW - Binding constant
KW - Binding site
KW - Flavonoid
KW - Fluorescence
KW - Serum albumin
UR - https://www.scopus.com/pages/publications/11844253806
U2 - 10.1016/j.bbagen.2004.10.013
DO - 10.1016/j.bbagen.2004.10.013
M3 - Article
C2 - 15652191
AN - SCOPUS:11844253806
SN - 0304-4165
VL - 1721
SP - 164
EP - 173
JO - Biochimica et Biophysica Acta - General Subjects
JF - Biochimica et Biophysica Acta - General Subjects
IS - 1-3
ER -