Extraction of new solitary wave solutions in a generalized nonlinear Schrödinger equation comprising weak nonlocality

Miguel Vivas-Cortez, Ghada Ali Basendwah, Beenish Rani, Nauman Raza, Mohammed Kbiri Alaoui

Producción científica: Contribución a una revistaArtículorevisión exhaustiva


This article delves into examining exact soliton solutions within the context of the generalized nonlinear Schrödinger equation. It covers higher-order dispersion with higher order nonlinearity and a parameter associated with weak nonlocality. To tackle this equation, two reputable methods are harnessed: the sine-Gordon expansion method and the G0=ðbG0 þ G þ aÞ-expansion method. These methods are employed alongside suitable traveling wave transformation to yield novel, efficient single-wave soliton solutions for the governing model. To deepen our grasp of the equation’s physical significance, we utilize Wolfram Mathematica 12, a computational tool, to produce both 3D and 2D visual depictions. These graphical representations shed light on diverse facets of the equation’s dynamics, offering invaluable insights. Through the manipulation of parameter values, we achieve an array of solutions, encompassing kink-type, dark soliton, and solitary wave solutions. Our computational analysis affirms the effectiveness and versatility of our methods in tackling a wide spectrum of nonlinear challenges within the domains of mathematical science and engineering.

Idioma originalInglés
Número de artículoe0297898
PublicaciónPLoS ONE
N.º5 May
EstadoPublicada - may. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 Vivas-Cortez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Profundice en los temas de investigación de 'Extraction of new solitary wave solutions in a generalized nonlinear Schrödinger equation comprising weak nonlocality'. En conjunto forman una huella única.

Citar esto