TY - JOUR
T1 - Evaluation of Adding Natural Gum to Pectin Extracted from Ecuadorian Citrus Peels as an Eco-Friendly Corrosion Inhibitor for Carbon Steel
AU - Núñez-Morales, Jorge
AU - Jaramillo, Lorena I.
AU - Espinoza-Montero, Patricio J.
AU - Sánchez-Moreno, Vanessa E.
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - The production and use of eco-friendly corrosion inhibitors allows valuable compounds contained in plant waste to be identified and repurposed while reducing the use of polluting synthetic substances. Pectin extracted from Tahiti limes (Citrus latifolia) and King mandarin (Citrus nobilis L.) in addition to natural gums—xanthan gum and latex from the “lechero” plant (Euphorbia laurifolia)— were used to create an eco-friendly corrosion inhibitor. The optimal extraction conditions for pectin were determined from different combinations of pH, temperature, and time in a 23 factorial design and evaluated according to the obtained pectin yield. The highest pectin extraction yields (38.10% and 41.20% from King mandarin and lime, respectively) were reached at pH = 1, 85◦C, and 2 h. Extraction of pectic compounds was confirmed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analyses. Subsequently, a simplex-centroid mixture design was applied to determine the formulation of extracted pectin and natural gums that achieved the highest corrosion inhibitor effect (linear polarization and weight loss methods in NACE 1D196 saline media using API-5LX52 carbon steel). Impedance spectroscopy analysis showed that the addition of xanthan gum to pectin (formulation 50% pectin–50% xanthan gum) improved the corrosion inhibitor effect from 29.20 to 78.21% at 400 ppm due to higher adsorption of inhibitory molecules on the metal surface.
AB - The production and use of eco-friendly corrosion inhibitors allows valuable compounds contained in plant waste to be identified and repurposed while reducing the use of polluting synthetic substances. Pectin extracted from Tahiti limes (Citrus latifolia) and King mandarin (Citrus nobilis L.) in addition to natural gums—xanthan gum and latex from the “lechero” plant (Euphorbia laurifolia)— were used to create an eco-friendly corrosion inhibitor. The optimal extraction conditions for pectin were determined from different combinations of pH, temperature, and time in a 23 factorial design and evaluated according to the obtained pectin yield. The highest pectin extraction yields (38.10% and 41.20% from King mandarin and lime, respectively) were reached at pH = 1, 85◦C, and 2 h. Extraction of pectic compounds was confirmed using Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry analyses. Subsequently, a simplex-centroid mixture design was applied to determine the formulation of extracted pectin and natural gums that achieved the highest corrosion inhibitor effect (linear polarization and weight loss methods in NACE 1D196 saline media using API-5LX52 carbon steel). Impedance spectroscopy analysis showed that the addition of xanthan gum to pectin (formulation 50% pectin–50% xanthan gum) improved the corrosion inhibitor effect from 29.20 to 78.21% at 400 ppm due to higher adsorption of inhibitory molecules on the metal surface.
KW - eco-friendly corrosion inhibitor
KW - impedance
KW - linear polarization
KW - natural gums
KW - pectin
KW - simplex-centroid mixture design
UR - http://www.scopus.com/inward/record.url?scp=85127473808&partnerID=8YFLogxK
U2 - 10.3390/molecules27072111
DO - 10.3390/molecules27072111
M3 - Article
C2 - 35408511
AN - SCOPUS:85127473808
SN - 1420-3049
VL - 27
JO - Molecules
JF - Molecules
IS - 7
M1 - 2111
ER -