Resumen
This study analyzes the perception of Uber users through Twitter, currently known as X, using the CRISP-DM methodology in Python. We collected data from the last twelve years to accomplish this study. The data set is divided into training and testing, processing them using natural language processing and classifying them as neutral, positive, and hostile. Classification algorithms such as Logistic Regression, Support Vector Machines (SVM), and Naive Bayes are applied, with SVM being the most effective in predicting user sentiments. This approach leverages Twitter accessibility and data analytics to understand the public perception of Uber.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings - 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
Páginas | 771-776 |
Número de páginas | 6 |
ISBN (versión digital) | 9798350361513 |
DOI | |
Estado | Publicada - 2023 |
Evento | 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023 - Las Vegas, Estados Unidos Duración: 13 dic. 2023 → 15 dic. 2023 |
Serie de la publicación
Nombre | Proceedings - 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023 |
---|
Conferencia
Conferencia | 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | Las Vegas |
Período | 13/12/23 → 15/12/23 |
Nota bibliográfica
Publisher Copyright:© 2023 IEEE.