Evaluating Uber Customers' Perception Through Machine Learning Techniques: A Case Study in Ecuador

Maria Becerra-Salas, Henry N. Roa

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

This study analyzes the perception of Uber users through Twitter, currently known as X, using the CRISP-DM methodology in Python. We collected data from the last twelve years to accomplish this study. The data set is divided into training and testing, processing them using natural language processing and classifying them as neutral, positive, and hostile. Classification algorithms such as Logistic Regression, Support Vector Machines (SVM), and Naive Bayes are applied, with SVM being the most effective in predicting user sentiments. This approach leverages Twitter accessibility and data analytics to understand the public perception of Uber.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas771-776
Número de páginas6
ISBN (versión digital)9798350361513
DOI
EstadoPublicada - 2023
Evento2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023 - Las Vegas, Estados Unidos
Duración: 13 dic. 202315 dic. 2023

Serie de la publicación

NombreProceedings - 2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023

Conferencia

Conferencia2023 International Conference on Computational Science and Computational Intelligence, CSCI 2023
País/TerritorioEstados Unidos
CiudadLas Vegas
Período13/12/2315/12/23

Nota bibliográfica

Publisher Copyright:
© 2023 IEEE.

Huella

Profundice en los temas de investigación de 'Evaluating Uber Customers' Perception Through Machine Learning Techniques: A Case Study in Ecuador'. En conjunto forman una huella única.

Citar esto