TY - JOUR
T1 - Electrochemical Oxidation Using Parallel Plate Flow Reactors as an Alternative Technique to Treat Single and Trichromy Dye Effluents
AU - Ferreira, Maiara B.
AU - Santos, Elaine Cristina M.de Moura
AU - Nascimento, José H.Oliveira
AU - Galvão, Felipe M.Fontes
AU - Dos Santos, Elisama Vieira
AU - Santos, José Eudes Lima
AU - Espinoza-Montero, Patricio J.
AU - Martínez-Huitle, Carlos A.
N1 - Publisher Copyright:
© 2023, Sociedad Química de México.
PY - 2023/9/19
Y1 - 2023/9/19
N2 - Electrochemical oxidation (EO) has been investigated as an alternative treatment technique for the remediation of real textile effluents containing a single dye and a trichromy of Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) dyes, using a parallel plate flow reactor equipped with Ti/Pt or Ti/Pt-Sn-Sb electrocatalytic materials and Ti as cathode. The influence of the anode material and applied current densities on decolourization, organic matter decrease, cell potential and energy consumption during EO was examined. Higher color removal was achieved with Ti/Pt-Sn-Sb in all treated effluents compared to Ti/Pt at all electrolysis times, due to high oxidant production, especially hydroxyl radicals on their surface. Polymer film formation on the anode surface inhibited chemical oxygen demand (COD) removal during the treatment of a single effluent containing RY 3RS and RR-RR Gran dyes with either anode, whereas COD removal efficiencies of 13.93 % and 30.03 %, and 54.74 % and 74.48 % were obtained for Ti/Pt and Ti/Pt-Sn-Sb, respectively, in treating trichromy effluent after 240 min of electrolysis. Lower energy consumption was required by Ti/Pt-Sn-Sb compared to the Ti/Pt anode. In most of the trials studied, EO enhanced dissolved oxygen (DO) and reduced effluent turbidity, making it safe for disposal in the environment.
AB - Electrochemical oxidation (EO) has been investigated as an alternative treatment technique for the remediation of real textile effluents containing a single dye and a trichromy of Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) dyes, using a parallel plate flow reactor equipped with Ti/Pt or Ti/Pt-Sn-Sb electrocatalytic materials and Ti as cathode. The influence of the anode material and applied current densities on decolourization, organic matter decrease, cell potential and energy consumption during EO was examined. Higher color removal was achieved with Ti/Pt-Sn-Sb in all treated effluents compared to Ti/Pt at all electrolysis times, due to high oxidant production, especially hydroxyl radicals on their surface. Polymer film formation on the anode surface inhibited chemical oxygen demand (COD) removal during the treatment of a single effluent containing RY 3RS and RR-RR Gran dyes with either anode, whereas COD removal efficiencies of 13.93 % and 30.03 %, and 54.74 % and 74.48 % were obtained for Ti/Pt and Ti/Pt-Sn-Sb, respectively, in treating trichromy effluent after 240 min of electrolysis. Lower energy consumption was required by Ti/Pt-Sn-Sb compared to the Ti/Pt anode. In most of the trials studied, EO enhanced dissolved oxygen (DO) and reduced effluent turbidity, making it safe for disposal in the environment.
UR - http://www.scopus.com/inward/record.url?scp=85174249112&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85174249112
SN - 1870-249X
JO - Journal of the Mexican Chemical Society
JF - Journal of the Mexican Chemical Society
ER -