Resumen
Estimates of the sex ratio and cost of reproduction in plant populations have implications for resource use by animals, reserve design, and mechanisms of species coexistence, but may be biased unless all potentially reproductive individuals are censused over several flowering seasons. To investigate mechanisms maintaining dioecy in tropical forest trees, we recorded the flowering activity, sexual expression, and reproductive effort of all 2209 potentially reproductive individuals within 16 species of Myristicaceae over 4 years on a large forest plot in Amazonian Ecuador. Female trees invested >10 times more biomass than males in total reproduction. Flowering sex ratios were male-biased in four species in ≥1 year, and cumulative 4-year sex ratios were male-biased in two species and for the whole family, but different mechanisms were responsible for this in different species. Annual growth rates were equivalent for both sexes, implying that females can compensate for their greater reproductive investment. There was no strict spatial segregation of the sexes, but females were more often associated with specific habitats than males. We conclude that male-biased sex ratios are not manifested uniformly even after exhaustive sampling and that the mechanisms balancing the higher cost of female reproduction are extremely variable.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 67-78 |
Número de páginas | 12 |
Publicación | American Journal of Botany |
Volumen | 94 |
N.º | 1 |
DOI | |
Estado | Publicada - ene. 2007 |