Resumen
In social networks, news is consumed has many consequences for the individual, society and organizations. Fake news on social media and other media are spreading widely and it is a matter of great concern due to its ability to cause a lot of social and national damage with destructive impacts. That is why there are many efforts in the scientific community to develop models that detect them. This article examines various machine learning models for the detection of fake news.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Information Technology and Systems - ICITS 2024 |
Editores | Alvaro Rocha, Jorge Hochstetter Diez, Carlos Ferras, Mauricio Dieguez Rebolledo |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 3-16 |
Número de páginas | 14 |
ISBN (versión impresa) | 9783031542343 |
DOI | |
Estado | Publicada - 14 feb. 2024 |
Evento | International Conference on Information Technology and Systems, ICITS 2024 - Temuco, Chile Duración: 24 ene. 2024 → 26 ene. 2024 |
Serie de la publicación
Nombre | Lecture Notes in Networks and Systems |
---|---|
Volumen | 932 LNNS |
ISSN (versión impresa) | 2367-3370 |
ISSN (versión digital) | 2367-3389 |
Conferencia
Conferencia | International Conference on Information Technology and Systems, ICITS 2024 |
---|---|
País/Territorio | Chile |
Ciudad | Temuco |
Período | 24/01/24 → 26/01/24 |
Nota bibliográfica
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.