Design of a Computer Vision-based Third-party Risk Alert System for Oil & Gas Pipeline Corridors

Edmundo Casas*, Leo Thomas Ramos, Cristian Romero, Francklin Rivas-Echeverria, Dunetchka Cerpa, Pablo Hernandez, Gonzalo Orellana, Jose Luis Ibarra, Carlos Rosas Albrecht, Natalia Cuevas, Juan Carlos Gallardo

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

This paper presents the development of a platform designed to detect and manage third-party risks in pipeline corridors. The project involved the collection of aerial images of pipeline areas, featuring various vehicles that pose potential risks. Using this dataset, we trained YOLOv9 models to identify these vehicles. Our evaluation identified the YOLOv9-C model as the most effective, with a precision of 86.6%, a recall of 74.5%, and a mean Average Precision of 83.1%. The chosen model was then incorporated into a custom-built platform designed to manage detections and alerts. This platform features components for visualization, logging, tracking, and notification dispatch. It demonstrates how integrating Artificial Intelligence into asset monitoring operations can greatly improve the efficiency and accuracy of risk detection and management.

Idioma originalInglés
Título de la publicación alojada2024 IEEE Technology and Engineering Management Society, TEMSCON LATAM 2024
EditoresPaul Sanmartin Mendoza, Cesar Vilora-Nunez, Eduardo Ahumanda-Tello
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350354317
DOI
EstadoPublicada - 2024
Evento2024 IEEE Technology and Engineering Management Society, TEMSCON LATAM 2024 - Panama City, Panamá
Duración: 18 jul. 202420 jul. 2024

Serie de la publicación

Nombre2024 IEEE Technology and Engineering Management Society, TEMSCON LATAM 2024

Conferencia

Conferencia2024 IEEE Technology and Engineering Management Society, TEMSCON LATAM 2024
País/TerritorioPanamá
CiudadPanama City
Período18/07/2420/07/24

Nota bibliográfica

Publisher Copyright:
© 2024 IEEE.

Citar esto