Deep Learning Models for Traffic Sign Recognition in Ecuador: Challenges and Solutions

Sebastián Tene-Garcés, Guido Ochoa-Moreno, Henry N. Roa*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

This study focuses on developing and evaluating deep learning models for traffic sign recognition in Ecuador. Given the unique characteristics of Ecuadorian traffic signs, particularly the “yield” sign with the phrase “Ceda el Paso”, this research addresses the challenges of adapting existing datasets and creating new data specific to the region. The study uses convolutional neural networks (CNNs) to improve the recognition and classification of four primary types of traffic signs: “stop”, “yield”, traffic lights, and speed limits. The methodology involved modifying the CRISP-DM approach to better suit academic research by focusing on relevant objectives and excluding the deployment phase due to the model’s specific scope. Data were sourced from public datasets and manually collected pictures, leading to a comprehensive database of 5322 pictures for training and validation and 400 pictures for testing. Data augmentation and preprocessing techniques were employed to enhance model performance. Three models were developed and tested: a traditional neural network, a CNN without regularization, and a CNN with regularization. The regularized CNN model performed best, achieving 91% accuracy on validation data and 81% on test data, demonstrating its robustness and generalizability. The study highlights the importance of having a broad and representative dataset and the effectiveness of regularization techniques in preventing overfitting.

Idioma originalInglés
Título de la publicación alojadaAdvances in Information and Communication - Proceedings of the 2025 Future of Information and Communication Conference FICC
EditoresKohei Arai
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas300-319
Número de páginas20
ISBN (versión impresa)9783031844591
DOI
EstadoPublicada - 2025
EventoFuture of Information and Communication Conference, FICC 2025 - Berlin, Alemania
Duración: 28 abr. 202529 abr. 2025

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen1285 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

ConferenciaFuture of Information and Communication Conference, FICC 2025
País/TerritorioAlemania
CiudadBerlin
Período28/04/2529/04/25

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Financiación

FinanciadoresNúmero del financiador
Pontificia Universidad Católica del EcuadorGI-Quito-071-2022

    Huella

    Profundice en los temas de investigación de 'Deep Learning Models for Traffic Sign Recognition in Ecuador: Challenges and Solutions'. En conjunto forman una huella única.

    Citar esto