Countable ordinal spaces and compact countable subsets of a metric space

Borys Álvarez-Samaniego, Andrés Merino

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)


We show in detail that every compact countable subset of a metric space is homeomorphic to a countable ordinal number, which extends a result given by Mazurkiewicz and Sierpinski for finite-dimensional Euclidean spaces. In order to achieve this goal, we use Transfinite Induction to construct a specific homeomorphism. In addition, we prove that for all metric space, the cardinality of the set of all the equivalence classes, up to homeomorphisms, of compact countable subsets of this metric space is less than or equal to aleph-one. We also show that for all cardinal number smaller than or equal to aleph-one, there exists a metric space with cardinality equals the aforementioned cardinal number.

Idioma originalInglés
Páginas (desde-hasta)1-11
Número de páginas11
PublicaciónAustralian Journal of Mathematical Analysis and Applications
EstadoPublicada - 11 nov. 2019

Nota bibliográfica

Publisher Copyright:
© 2019 Austral Internet Publishing.

Citar esto