Construction of bilinear Bäcklund transformation and complexitons for a newer form of Boussinesq equation describing shallow water waves

Faisal Javed, Miguel Vivas-Cortez, Zil-E-Huma, Nauman Raza, M.S. Alqarni

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This research investigates the characteristics and attributes of a new (3+ 1)-dimensional Boussinesq equation that describes shallow water waves in higher dimensions. By utilizing the Hirota bilinear representation, a bilinear Bäcklund transformation is provided for the proposed model to get soliton solutions. Then, the extended transform rational function method is applied to calculate the complexitons type solutions. The results demonstrate various exact solutions with different structures, including periodic, singular, and bright solitons. Comprehensive graphical representations in 2D, 3D, and density plots are provided to highlight the physical properties of these solutions. Our approach is distinguished by the unique nature of the problem and the use of previously untested methods in this context, leading to many new and original optical soliton solutions. These results highlight the effectiveness of the proposed method in tackling nonlinear problems in engineering and the natural sciences, exceeding previous work found in the literature.

Idioma originalInglés
Número de artículo107903
PublicaciónResults in Physics
Volumen64
DOI
EstadoPublicada - sep. 2024

Nota bibliográfica

Publisher Copyright:
© 2024 The Author(s)

Huella

Profundice en los temas de investigación de 'Construction of bilinear Bäcklund transformation and complexitons for a newer form of Boussinesq equation describing shallow water waves'. En conjunto forman una huella única.

Citar esto