TY - JOUR
T1 - COLORIMETRIC DETECTION AND ADSORPTION OF MERCURY USING SILVER NANOPARTICLES: A BIBLIOGRAPHIC AND PATENT REVIEW
T2 - A bibliographic and patent review
AU - Pilaquinga, Fernanda
AU - Morey, Jeroni
AU - Vivas-Rodríguez, Miguel
AU - Yánez-Jácome, Gabriela
AU - Fernández, Lenys
AU - Piña, María de las Nieves
N1 - Publisher Copyright:
© 2021 Bentham Science Publishers.
PY - 2020/12/30
Y1 - 2020/12/30
N2 - Mercury (Hg) contamination is a problem that currently affects not only the environment but also human health. Various types of commercial adsorbents have been proposed for its removal. Silver is a noble element that can chemically adsorb mercury, forming amalgams. However, its use as an adsorbent presents the following disadvantages: rapid surface saturation and high cost. These limitations can easily be overcome using silver nanoparticles (AgNPs). With a size of less than 100 nm, their reactivity, their high surface area, and a minimal amount of metallic precursor, they are ideal candidates for mercury removal. This study presents a compendium of the use of conventional mercury adsorbents and the use of AgNPs for their colorimetric detection and removal in different matrices, in both the aqueous and gas phases of Hg0 and Hg2+. In addition, the number of patents available in each case is analyzed. AgNPs as colorimetric sensors allow quick detection of mercury in-situ. Additionally, the adsorption systems formed with AgNPs, allow obtaining stable and chemically inert complexes, facilitating their recycling. It is concluded that the use of AgNPs is particularly efficient for the detection and removal of mercury, presenting a removal percentage of over 90%. As a result of the patents analyzed, its use is perfectly applicable at an industrial level.
AB - Mercury (Hg) contamination is a problem that currently affects not only the environment but also human health. Various types of commercial adsorbents have been proposed for its removal. Silver is a noble element that can chemically adsorb mercury, forming amalgams. However, its use as an adsorbent presents the following disadvantages: rapid surface saturation and high cost. These limitations can easily be overcome using silver nanoparticles (AgNPs). With a size of less than 100 nm, their reactivity, their high surface area, and a minimal amount of metallic precursor, they are ideal candidates for mercury removal. This study presents a compendium of the use of conventional mercury adsorbents and the use of AgNPs for their colorimetric detection and removal in different matrices, in both the aqueous and gas phases of Hg0 and Hg2+. In addition, the number of patents available in each case is analyzed. AgNPs as colorimetric sensors allow quick detection of mercury in-situ. Additionally, the adsorption systems formed with AgNPs, allow obtaining stable and chemically inert complexes, facilitating their recycling. It is concluded that the use of AgNPs is particularly efficient for the detection and removal of mercury, presenting a removal percentage of over 90%. As a result of the patents analyzed, its use is perfectly applicable at an industrial level.
KW - Adsorption
KW - Mercury
KW - Nanoparticles
KW - Sensor
KW - Silver
KW - Toxic metal
UR - http://www.scopus.com/inward/record.url?scp=85120696915&partnerID=8YFLogxK
U2 - 10.2174/2210681210999200909113454
DO - 10.2174/2210681210999200909113454
M3 - Article
AN - SCOPUS:85120696915
SN - 2210-6812
VL - 11
JO - Nanoscience and Nanotechnology - Asia
JF - Nanoscience and Nanotechnology - Asia
IS - 5
M1 - e090920185767
ER -