Classification of Toxic Comments on Social Networks Using Machine Learning

María Fernanda Revelo-Bautista, Jair Oswaldo Bedoya-Benavides, Jaime Paúl Sayago-Heredia, Pablo Pico-Valencia, Xavier Quiñonez-Ku

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

This research addresses the problem of toxic comments in social networks, and how artificial intelligence (AI) and machine learning (Machine Learning) can help. It presents the development of a classification model using AI with machine learning techniques to identify toxic comments on Twitter. The proposed classifier, developed in Python, was established with 7 different algorithms using approaches or strategies for multi-label classification, preprocessing, cleaning and data visualization. This model was trained with a total of 159571 comments from the Kaggle repository dataset called Jigsaw, which has the comments classified with various features. After the training, evaluation and comparison of the model created, the result was a classifier capable of identifying toxic and offensive words or comments with an accuracy of 92.16%.

Idioma originalInglés
Título de la publicación alojadaInternational Conference on Applied Technologies - 5th International Conference on Applied Technologies, ICAT 2023, Revised Selected Papers
EditoresMiguel Botto-Tobar, Marcelo Zambrano Vizuete, Sergio Montes León, Pablo Torres-Carrión, Benjamin Durakovic
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas257-270
Número de páginas14
ISBN (versión impresa)9783031589522
DOI
EstadoPublicada - 2024
Evento5th International Conference on Applied Technologies, ICAT 2023 - Samborondon, Ecuador
Duración: 22 nov. 202324 nov. 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen2050 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia5th International Conference on Applied Technologies, ICAT 2023
País/TerritorioEcuador
CiudadSamborondon
Período22/11/2324/11/23

Nota bibliográfica

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Huella

Profundice en los temas de investigación de 'Classification of Toxic Comments on Social Networks Using Machine Learning'. En conjunto forman una huella única.

Citar esto