Resumen
This research addresses the problem of toxic comments in social networks, and how artificial intelligence (AI) and machine learning (Machine Learning) can help. It presents the development of a classification model using AI with machine learning techniques to identify toxic comments on Twitter. The proposed classifier, developed in Python, was established with 7 different algorithms using approaches or strategies for multi-label classification, preprocessing, cleaning and data visualization. This model was trained with a total of 159571 comments from the Kaggle repository dataset called Jigsaw, which has the comments classified with various features. After the training, evaluation and comparison of the model created, the result was a classifier capable of identifying toxic and offensive words or comments with an accuracy of 92.16%.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | International Conference on Applied Technologies - 5th International Conference on Applied Technologies, ICAT 2023, Revised Selected Papers |
Editores | Miguel Botto-Tobar, Marcelo Zambrano Vizuete, Sergio Montes León, Pablo Torres-Carrión, Benjamin Durakovic |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 257-270 |
Número de páginas | 14 |
ISBN (versión impresa) | 9783031589522 |
DOI | |
Estado | Publicada - 2024 |
Evento | 5th International Conference on Applied Technologies, ICAT 2023 - Samborondon, Ecuador Duración: 22 nov. 2023 → 24 nov. 2023 |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 2050 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | 5th International Conference on Applied Technologies, ICAT 2023 |
---|---|
País/Territorio | Ecuador |
Ciudad | Samborondon |
Período | 22/11/23 → 24/11/23 |
Nota bibliográfica
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.